Current Issue : January-March Volume : 2022 Issue Number : 1 Articles : 5 Articles
This paper presents a fully integrated physical layer (PHY) transmitter (TX) suiting for multiple industrial protocols and compatible with different protocol versions. Targeting a wide operating range, the LC-based phase-locked loop (PLL) with a dual voltage-controlled oscillator (VCO) was integrated to provide the low jitter clock. Each lane with a configurable serialization scheme was adapted to adjust the data rate flexibly. To achieve high-speed data transmission, several bandwidth-extended techniques were introduced, and an optimized output driver with a 3-tap feedforward equalizer (FFE) was proposed to accomplish high-quality data transmission and equalization. The TX prototype was fabricated in a 28-nm CMOS process, and a single-lane TX only occupied an active area of 0.048 mm2. The shared PLL and clock distribution circuits occupied an area of 0.54 mm2. The proposed PLL can support a tuning range that covers 6.2 to 16 GHz. Each lane’s data rate ranged from 1.55 to 32 Gb/s, and the energy efficiency is 1.89 pJ/bit/lane at a 32-Gb/s data rate and can tune an equalization up to 10 dB....
The imbalance of the currents leaked by CMOS standard cells when different logic values are applied to their inputs can be exploited as a side channel to recover the secrets of cryptographic implementations. Traditional side-channel countermeasures, primarily designed to thwart the dynamic leakage behavior, were shown to be much less powerful against this static threat. Thus, a special protection mechanism called Balanced Static Power Logic (BSPL) has been proposed very recently. Essentially, fundamental standard cells are re-designed to balance their drain-source leakage current independent of the given input. In this work, we analyze the BSPL concept in more detail and reveal several design issues that limit its effectiveness as a universal logic library. Although balancing drain-source currents remains a valid approach even in more advanced technology generations, we show that it is conceptually insufficient to achieve a fully data-independent leakage behavior in smaller geometries. Instead, we suggest an alternative approach, so-called improved BSPL (iBSPL). To evaluate the proposed method, we use information theoretic analysis. As an attack strategy, we have chosen Moments-Correlating DPA (MCDPA), since this analysis technique does not depend on a particular leakage model and allows a fair comparison. Through these evaluation methods, we show iBSPL demands fewer resources and delivers better balance in the ideal case as well as in the presence of process variations....
In this work, we investigate the resistive switching behaviors of HfO2-based resistive random- access memory (RRAM) in two different oxidants (H2O and O3) in an atomic layer deposition system. Firstly, the surface characteristics of the Ni/HfO2/Si stack are conducted by atomic force microscopy (AFM). A similar thickness is confirmed by scanning electron microscope (SEM) imaging. The surface roughness of the HfO2 film by O3 (O3 sample) is smoother than in the sample by H2O (H2O sample). Next, we conduct electrical characteristics by current–voltage (I–V) and capacitor– voltage (C–V) curves in an initial process. The forming voltage of the H2O sample is smaller than that of the O3 sample because the H2O sample incorporates a lot of H+ in the film. Additionally, the smaller capacitor value of the H2O sample is obtained due to the higher interface trap in H2O sample. Finally, we compare the resistive switching behaviors of both samples by DC sweep. The H2O sample has more increased endurance, with a smaller on/off ratio than the O3 sample. Both have good non-volatile properties, which is verified by the retention test....
The accurate cycle time (CT) prediction of the wafer fabrication remains a tough task, as the system level of work in process (WIP) is fluctuant. Aiming to construct one unified CT forecasting model under dynamic WIP levels, this paper proposes a transfer learning method for finetuning the predicted neural network hierarchically. First, a two-dimensional (2D) convolutional neural network was constructed to predict the CT under a primary WIP level with the input of spatial-temporal characteristics by reorganizing the input parameters. Then, to predict the CT under another WIP level, a hierarchical optimization transfer learning strategy was designed to finetune the prediction model so as to improve the accuracy of the CT forecasting. The experimental results demonstrated that the hierarchically transfer learning approach outperforms the compared methods in the CT forecasting with the fluctuation of WIP levels....
In the modern age, the use of video has become fundamental in communication and this has led to its use through an increasing number of devices. The higher resolution required for images and videos leads to more memory space and more efficient data compression, obtained by improving video coding techniques. For this reason, the Alliance for Open Media (AOMedia) developed a new open-source and royalty-free codec, named AOMedia Video 1 (AV1). This work focuses on the Wiener filter, a specific loop restoration tool of the AV1 video coding format, which features a significant amount of computational complexity. A new hardware architecture implementing the separable symmetric normalized Wiener filter is presented. Furthermore, the paper details possible optimizations starting from the basic architecture. These optimizations allow the Wiener filter to achieve a 100*reduction in processing time, compared to existing works, and 5 improvement in megasamples per second....
Loading....